QUASI-NORM TECHNIQUES FOR FINITE ELEMENT APPROXIMATION OF p-LAPLAICAN

نویسنده

  • KWANG-YEON KIM
چکیده

The p-Laplacian problem is one of the typical examples of degenerate nonlinear systems arising from nonlinear diffusion and filtration, powerlaw materials and quasi-Newtonian flows. In this article we give a survey of quasi-norm techniques to establish optimal error estimates for finite element approximation of p-Laplacian.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite element quasi-interpolation and best approximation

This paper introduces a quasi-interpolation operator for scalarand vector-valued finite element spaces constructed on affine, shape-regular meshes with some continuity across mesh interfaces. This operator gives optimal estimates of the best approximation error in any Lp-norm assuming regularity in the fractional Sobolev spaces W r,p, where p ∈ [1,∞] and the smoothness index r can be arbitraril...

متن کامل

A posteriori FE error control for p-Laplacian by gradient recovery in quasi-norm

A posteriori error estimators based on quasi-norm gradient recovery are established for the finite element approximation of the p-Laplacian on unstructured meshes. The new a posteriori error estimators provide both upper and lower bounds in the quasi-norm for the discretization error. The main tools for the proofs of reliability are approximation error estimates for a local approximation operat...

متن کامل

Discontinuous Galerkin Finite Element Approximation of Quasilinear Elliptic Boundary Value Problems Ii: Strongly Monotone Quasi-newtonian Flows

In this article we develop both the a priori and a posteriori error analysis of hp– version interior penalty discontinuous Galerkin finite element methods for strongly monotone quasi-Newtonian fluid flows in a bounded Lipschitz domain Ω ⊂ R, d = 2, 3. In the latter case, computable upper and lower bounds on the error are derived in terms of a natural energy norm which are explicit in the local ...

متن کامل

Fuzzy Best Simultaneous Approximation of a Finite Numbers of Functions

Fuzzy best simultaneous approximation of a finite number of functions is considered. For this purpose, a fuzzy norm on $Cleft (X, Y right )$ and its fuzzy dual space and also the  set of subgradients of a fuzzy norm are introduced. Necessary case of a proved theorem about characterization of simultaneous approximation will be extended to the fuzzy case.

متن کامل

Optimal order finite element approximation for a hyperbolic‎ ‎integro-differential equation

‎Semidiscrete finite element approximation of a hyperbolic type‎ ‎integro-differential equation is studied. The model problem is‎ ‎treated as the wave equation which is perturbed with a memory term.‎ ‎Stability estimates are obtained for a slightly more general problem.‎ ‎These, based on energy method, are used to prove optimal order‎ ‎a priori error estimates.‎

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007